
I
s

C

a

b

c

d

e

R
A

A

a
H
m
i
t
o
a
p
p
T
s
b

Z

t
N
n
w
d
T
2
fi

f

1
h

Basic and Applied Ecology 14 (2013) 309–319

nfluences of temporal independence of data on modelling
pecies distributions

hia-Ying Koa,b,c, Chie-Jen Kod, Ruey-Shing Line, Pei-Fen Leed,∗

Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA
Delta Electronics Foundation, Taipei 114, Taiwan
Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106, Taiwan
Endemic Species Research Institute, Nantou 552, Taiwan

eceived 22 June 2012; accepted 4 April 2013
vailable online 8 May 2013

bstract

Modelling species distributions has been widely used to understand present and future potential distributions of species,
nd can provide adaptation and mitigation information as references for conservation and management under climate change.
owever, various methods of data splitting to develop and validate functions of the models do not get enough attention, which
ay mislead the interpretation of predicted results. We used the Taiwanese endemic birds to test the influences of temporal

ndependence of datasets on model performance and prediction. Training and testing data were considered to be independent if
hey were collected during different survey periods (1993–2004 and 2009–2010). The results indicated no significant differences
f six model performance measures (AUC, kappa, TSS, accuracy, sensitivity, and specificity) among the combinations of training
nd testing datasets. Both species- and grid cell-based assessments differed significantly between predictions by the annual and
ooled training data. We also found an average of 85.8% similarity for species presences and absences in different survey
eriods. The remaining dissimilarity was mostly caused by species observed in the late survey period but not in the early one.
he method of data splitting, yielding training and testing data, is critical for resulting model species distributions. Even if
imilar model performance exists, different methods can lead to different species distributional maps. More attention needs to
e given to this issue, especially when amplifying these models to project species distributions in a changing world.

usammenfassung

Die Modellierung der Verbreitung von Arten wurde weithin angewendet, um die gegenwärtige und die zukünftige poten-
ielle Verbreitung von Arten zu verstehen. Sie kann auch Informationen zu Anpassung und Vorbeugung als Bezugspunkte für

aturschutz und Management in Hinblick auf den Klimawandel liefern. Indessen wird verschiedenen Methoden der Date-
aufteilung für die Entwicklung und Validierung der Funktionen von Modellen nicht genügend Aufmerksamkeit geschenkt,
as zu irrigen Interpretationen der Vorhersageergebnisse führen kann. Wir wählten die endemischen Vögel Taiwans, um

en Einfluss zeitlicher Unabhängigkeit der Datensätze auf Modellleistung und -vorhersage zu prüfen. Die Trainings- und
estdaten wurden als unabhängig angesehen, wenn sie aus unterschiedlichen Erfassungsperioden stammten (1993–2004 bzw.
009–2010). Die Ergebnisse zeigten für sechs Maßzahlen der Modellleistung (AUC, kappa, TSS, accuracy, sensitivity und speci-
city) keine signifikanten Unterschiede zwischen den getesteten Kombinationen von Trainings- und Testdatensätzen. Sowohl
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rtbezogene als auch Rasterzellen-basierte Schätzungen differierten signifikant hinsichtlich der Vorhersagen, wenn Beobachtun-
en aus Einzeljahren bzw. über die Erfassungsperiode kumulierte Beobachtungen zugrundegelegt wurden. Wir fanden auch eine
urchschnittliche Ähnlichkeit der Artenidentität von 85.8% zwischen den beiden Erfassungsperioden. Die verbleibende Unähn-
ichkeit wurde hauptsächlich durch einen Zugewinn an Arten in der späteren Erfassungsperiode verursacht. Die Vorgehensweise
ei der Datenaufteilung, die die Trainings- und Testdatensätze ergibt, ist entscheidend für die aus dem Modell resultierenden
erbreitungen der Arten. Selbst bei gleicher Leistungsfähigkeit der Modelle können unterschiedliche Methoden zu unter-
chiedlichen Verbreitungskarten führen. Größere Aufmerksamkeit muss diesem Umstand gewidmet werden, insbesondere,
enn diese Modelle erweitert werden, um die Verbreitung von Arten in einer sich wandelnden Welt vorauszuberechnen.
2013 Gesellschaft für Ökologie. Published by Elsevier GmbH. All rights reserved.
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Species distribution models are increasingly used and
egarded as multidirectional applications for conservation
nd management, especially mitigation and adaptation strate-
ies under climate change such as prioritization of sites for
pecies and monitoring of species declines and expansions
n range (Guisan & Zimmermann 2000; Hijmans & Graham
006; Crawford & Hoagland 2010; Elith, Kearney, & Phillips
010). Several studies have addressed the usage of differ-
nt models including regression models, machine learning
odels, and maximum entropy, and compared advantages

nd disadvantages among them (Elith et al. 2006; Austin
007; Meynard & Quinn 2007; Phillips et al. 2009). Simul-
aneously, these studies advance to the development of

ature models, which are more adequate for different species
roups.

With so much need to target conservation planning as effi-
iently as possible, optimizing the methodology becomes an
mperative for species distribution models. A good set of eco-
ogical data is the basis for successful species distribution

odels, yet there is a surprising lack of guidance for such
ata use. For instance, should data collected from different
ears be used separately or unitedly? Besides, needs for inde-
endent data – data for different subjects that do not depend
n each other – from the ecological data sets are of criti-
al importance to be used for statistical hypothesis tests. The
ndependent data also have a potential influence on model
erformance as well as subsequent interpretation of model
redictions. However, in ecology, the independent data are
ifficult to define because the entire ecosystem is interrelated
nd can be regarded as one “subject”. Even if we assume that
ach species, site or survey period is an independent “subject”
n the ecosystem, the restrictions on manpower, funding, and
he time series for field surveys make “completely” indepen-
ent data difficult to be obtained. Additionally, ecological
iterature appears to have paid less attention to how inde-
endent and dependent data may influence the accuracy of
pecies distribution models.

A simple way to define “independent data” for modelling

pecies distributions is to assume samples from different
ears are independent and to develop/train models by such
amples. Museum records, private collections and historical

d
f
o

odel; Model performance; Endemism

iterature that cover long periods of time and contain a
ast source of information on species distributions are com-
only used to develop/train species distribution models

Newbold 2010). However, these consecutive-years data
re often combined together for training models instead of
sing data from individual years. For using the consecutive-
ears data together, it has clearly been biased spatially,
nvironmentally, temporally, and taxonomically in the data
nd there are still major gaps in our knowledge (Soberon,
lorente, & Onate, 2000; Newbold 2010). Results analyzed
y questionable data splitting, such as general uses of the
forementioned data, may reflect sampling effort more than
eal ecological phenomena (Newbold 2010). Thus, split-
ing data adequately and correctly before using them to
evelop/train models is important to avoid biases and mis-
nterpretation.

Model performance is an important indicator for the
redibility of each species distribution model (Guisan &
immermann 2000). Recent studies have compared the per-

ormance of different models that are expected to predict
pecies distributions more precisely to face rapid anthro-
ogenic habitat destruction (Fielding & Bell 1997; Segurado

Araujo 2004; Allouche, Tsoar, & Kadmon, 2006; Austin
007). It has been suggested that evaluating the nature of
rediction errors (i.e. false positives/false negatives or com-
ission/omission error) to assess prediction success might

e more advantageous than evaluating the overall percentage
ccuracy, which has a restricted set of error measures and has
een commonly used in the late 20th century. The generally
ccepted methods are ROC (receiver operating characteris-
ics) plots and measures derived from a binary confusion

atrix (Swets 1996; Fielding & Bell 1997; Zou, O’Malley, &
auri 2007). Moreover, goals of model predictions in appli-

ation to conservation and/or management and requirements
or certain accuracy further affect choices and reliability of
he above methods. For example, if a model is used to predict
he impacts on endangered species, a false positive might be
f greater concern. However, if species distributions are pre-
icted as references for environmental or urban development,
hen false negatives need to be taken into account. Using

ifferent methods for model performance evaluation is, there-
ore, helpful for understanding overall predictive capability
f models.
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In the process of model performance evaluation, data
sed in the assessment of models (i.e. reference/testing data)
ave major impacts on the accuracy and interpretation of
odel results (Foody 2011). These reference/testing data

an be independent or dependent of the data used for devel-
ping/training models (i.e. training data). Using data from
ifferent survey periods for model training and model test-
ng, respectively, is a simple way to ensure independence.
owever, temporally independent reference/testing data are

lways not easy to be additionally obtained. Besides, as far as
e know differences between the usages of temporally inde-
endent and dependent reference/testing data have not been
horoughly compared.

In Taiwan, a breeding bird survey has been implemented
or over 15 years, and a systematic investigation, which
s called “BBS Taiwan” and formed by non-governmental
rganizations, academic institutions, and government agen-
ies, has been established in 2009 (Hsu, Yao, Lin, Yang, &
ai 2004; Koh, Lee, & Lin 2006; Lee et al. 2010). A core
oncept of the BBS Taiwan is to encourage the public to
articipate in the studies of ecological science and conserva-
ion and to promote a large-scale and long-term bird survey.
bservers have been well trained prior to the survey, and

hey continue to investigate bird species’ populations two
o three times during the breeding season. Thus, the BBS
aiwan is a suitable database to not only monitor changes
f species populations and distributions but also to estimate
nfluences of sub-sets of data on the species distribution mod-
ls.

Our study focused on the influences of temporal indepen-
ence of datasets on model performance and predictions. The
raining data were considered to be dependent if they were
xtracted using records pooled for all years, different with
sing annual records. On the other hand, the testing data were
onsidered to be independent if they were collected during
ifferent survey periods.

aterials and methods

tudy area

Taiwan Island, which lies across the ocean from main-
and China, has frequent geological activities. The Taiwan
sland experienced numerous disturbances in the Earth’s
rust, which formed various landscapes and over 100 moun-
ains 3000 m above sea level. The geographic coordinates
21◦53′–25◦18′ N latitude and 120◦08′–122◦01′ E longitude;
ig. 1) of the Taiwan Island span an area of 36,000 sq km.
wo-thirds of the island is mountainous, and one-third is low-

and. Because (1) the Taiwan Island is located at the transition

one between the Holarctic and Palaeotropical Kingdoms,
nd (2) it has a high productivity generated by year-round
igh temperatures and heavy rainfall, a high level of biodi-
ersity is formed. Accordingly, the Taiwan Island has been
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egarded as the diversity center of East Asia and owns a wide
ariety of endemic species (Lei, Qu, Lu, & Yin 2003).

ampling species

Seventeen Taiwanese endemic bird species belonging to
en families were used in this study (Table 1). We cate-
orized these 17 species as common, uncommon, and rare
pecies based on number of grid cells where species had
een sighted and heard (Ko, Lin, & Lee 2010). The com-
on species are present in more than 200 grid cells, the

ncommon species are present in 100–200 grid cells, and the
are species are present in fewer than 100 grid cells. In this
rid cell system, the Mikado Pheasant and Swinhoe’s Pheas-
nt are categorized as rare species, which is congruent with
he IUCN Red List Category (IUCN 2012), which lists both
heasant species as near-threatened species. These endemic
ird species are distributed across all ranges of elevation
nd territorial areas in Taiwan and generally occupy habi-
ats with high vegetation cover and low human disturbance,
xcept for the Styan’s Bulbul, which favors high-road density
reas (Ko et al., 2010).

ampling methods

To generate dependent and independent datasets, we com-
iled inventories of the avifauna during two time periods:
993–2004 (Hsu et al. 2004; Koh et al. 2006) and 2009–2010
Lee et al. 2010). All data were obtained by point- and
ransect-counting techniques based on distance sampling

ethods (Buckland, Anderson, Burnham, & Laake 1993;
uckland, Goudie, & Borchers 2000). The point-counting
ethod involved a 1500- to 2000 m-long transect with 10

ampling sites 150 m apart in 1993–2004 and to 6–10 samp-
ing sites 200 m apart since 2009. Birds were recorded in
ach sampling site for a 6 min period. The transect-counting
ethod used a fixed observation route, which was 3 km

ong and walked at a consistent speed of 1.5 km/hour with-
ut stopping. In 1993–2004, the sites were sampled once
er breeding season (i.e. March to June in Taiwan). In
009–2010, the sites were sampled mainly during the breed-
ng season. Because the altitude led to slight differences in
he bird breeding season in Taiwan, the sampling season in
009–2010 was divided into three subdivisions: the areas
eaching maximum altitudes below 1500 m a.s.l. were sur-
eyed during March and May, the areas situated between
500 and 2500 m a.s.l. were surveyed during April and June,
nd the areas above altitudes of 2500 m a.s.l. were surveyed
uring May and June, respectively. Although the two cen-
us methods differ in precision of the bird density estimate
Buckland 2006), two advantages have been noted for the

imultaneous use of the different methods: (1) increasing
verall precision concerning density, and (2) providing the
ossibility to decompose components during the detection
rocesses (Nichols, Thomas, & Conn 2008). We did not
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Fig. 1. Geographical location of the Taiwan Island and 1 km

ifferentiate between results obtained by the two census
ethods.
Observations of birds and geographic coordinates of

ndividual sampling sites were recorded. All geographic
oordinates were then transferred to a grid of 1 km × 1 km
ells. In total, 4082 grid cells were sampled.

odelling species distributions

We used a presence-only model: Maximum Entropy (Max-
nt) for modelling in this study. Its algorithm assigns a

on-negative probability of species occurrence to each grid
ell in the study area (Phillips, Dudik, & Schapire 2004;
hillips, Anderson, & Schapire 2006). We chose 22 environ-
ental variables (Su 1992; Koh et al. 2006; Ko, Lin, Ding,

(
e
a
t

ution grid cells investigated in 1993–2004 and 2009–2010.

sieh, & Lee 2009; Ko, Root, & Lee 2011; see Appendix
: Table 1 for full information on the variables) to run

he Maxent model. Most environmental variables had a low
orrelation with any of the others estimated by univariate
nalysis (see Appendix A: Table 2), and all variables were
eft for modelling.

Four combinations of data splitting to understand how tem-
oral independence may influence model performance and
redictive distributions of species were used and compared
n the analyses. For training models, we randomly selected
0% of presences of individual species in 1993–2004. The
0% data were extracted using two methods: annual records

YY) and records pooled for all years (AYs). The 80% pres-
nces of a species for each year were separately selected
nd then combined together in the YY-method. However, in
he AYs-method, all presences of a species were combined
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Table 1. List of the 17 Taiwanese endemic bird species considered in this study. The species are categorized as common (>200; C), uncommon
(100–200; U) or rare (<100; R) based on number of grid cells are occupied (# cells). Nomenclature follows Clements et al. (2011).

Family English name Scientific name Cat. # cells

Corvidae Formosan Magpie Urocissa caerulea U 156
Megalaimidae Taiwan Barbet Megalaima nuchalis C 1657
Megaluridae Taiwan Bush-Warbler Bradypterus alishanensis U 135
Muscicapidae Collared Bush-Robin Tarsiger johnstoniae C 202
Paridae Yellow Tit Macholophus holsti U 151
Phasianidae Taiwan Partridge Arborophila crudigularis C 408

Mikado Pheasant Syrmaticus mikado R 30
Swinhoe’s Pheasant Lophura swinhoii R 95

Pycnonotidae Styan’s Bulbul Pycnonotus taivanus C 414
Regulidae Flamecrest Regulus goodfellowi U 305
Timaliidae Taiwan Hwamei Garrulax taewanus C 482

White-whiskered Laughingthrush Garrulax morrisonianus C 207
White-eared Sibia Heterophasia auricularis C 779
Steere’s Liocichla Liocichla steerii C 673
Taiwan Yuhina Yuhina brunneiceps C 772
Taiwan Barwing Actinodura morrisoniana U 102

Turdidae Formosan Whistling-Thrush Myophonus insularis C 481
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ogether and then 80% of the data were randomly selected.
or model testing, we used the remaining 20% of data from
993 to 2004 or all data from 2009 to 2010. The mod-
ls, including both training and testing, were repeated 100
imes. We used the default setting in Maxent, including
ll features (i.e. linear features, quadratic features, prod-
ct feature, threshold features, and hinge features) and
sing logistic format as output values (Phillips & Dudik
008).

In short, the training data selected from the annual records
or the 1993–2004 survey period (YY-method) and the testing
ata recorded during a different survey period (2009–2010)
ere regarded as temporally independent data. On the other
and, the training data selected randomly from the data
ooled for all years 1993–2004 (AYs-method) and the
emaining data from the same survey period, which were used
or model testing, were regarded as temporally dependent
ata.

odel evaluation, comparison and statistics

We used six measures to estimate model performance and
ompared differences among 2 (the training data extracted
ccording to the YY- or AYs-method) × 2 (the testing data
rom the 1993–2004 and 2009–2010 survey period, respec-
ively) dataset combinations. Values of an area under the ROC
urve (AUC), kappa, accuracy, sensitivity, specificity, and
rue skills statistic (TSS) were evaluated. The six measures
ndividually place different emphases, such as quantifying

mission/commission error or both, on the model results
details see below; Allouche et al. 2006), which can reveal
dvantages and disadvantages of predictive results modelled
y each dataset combination.

s
t
p

The AUC is a threshold as well as prevalence indepen-
ent accuracy measure of species distribution models and
quivalent to the probability that a species distribution model
ill rank a randomly chosen species presence site higher

han a randomly chosen absence site (Swets 1996; Zou et al.
007). The remaining five measures are generated from a
onfusion/error matrix (Fielding & Bell 1997; see Appendix
: Tables 3 and 4), which includes true and false positives

nd negatives by applying a certain threshold to transform the
robabilities into a dichotomous set of presence–absence pre-
ictions and constructing the matrix. Kappa and TSS take into
ccount both omission and commission errors in one parame-
er and their relative tolerance to zero values in the confusion

atrix. Both of them range from +1 to −1, where +1 indi-
ates perfect agreement and values of zero or less indicate
model performance no better than random (Cohen 1960).
he main difference between kappa and TSS is dependency
n prevalence. TSS is proposed as being immune to preva-
ence and to have all of the advantages of kappa (Allouche
t al. 2006). Accuracy (i.e. overall accuracy) is calculated as
n overall proportion of observed presences and absences that
re predicted correctly. Sensitivity and specificity are calcu-
ated, respectively, as the proportion of observed presences or
bserved absences that are predicted correctly. Simply, sen-
itivity quantifies omission error, and specificity quantifies
ommission error. The above three measures are indepen-
ent of each other and of prevalence. Values of accuracy,
ensitivity and specificity are in the range from 0 to +1,
here +1 represents a good model performance (i.e. a per-

ect species distribution prediction). A sensitivity-specificity

um maximization threshold of each species was used to
ransform probabilistic predictions into presence–absence
redictions.
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Fig. 2. Six model performance measures, including AUC, accuracy, kappa, sensitivity, specificity, and TSS, calculated for four combinations
of datasets. The training data were extracted using two methods: annual records (YY-method) and records pooled for all years (AYs-method).
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he testing data were surveyed in 1993–2004 and 2009–2010, resp

To compare predicted results of the models trained by the
Y- and AYs-method, we used both species- and grid cell-
ased assessments. The sum of probabilistic presences of
ndividual species, range sizes of individual species, average
f probabilistic presences of all endemic species of each grid
ell, and predicted species richness of each grid cell were cal-
ulated to assess effects of using the temporally independent
r dependent data.

The sum of probabilistic presences of individual species
epresents an entire probability of species’ presences in an
rea while the range sizes represent the extent of occur-
ence of a species that is often measured by a minimum
onvex polygon of the present occurrence of the species
Gaston & Fuller 2009). In other words, the range sizes of
species can be considered the amount of sub-areas within

he area (the Taiwan Island in our case) that are occupied
y the species. Similarly, the average of probabilistic pres-
nces of all endemic species of each grid cell indicates the
robability of all endemic species being present in a grid
ell. The predicted species richness of each grid cell is
he number of species predicted to be present in that grid
ell.

We conducted the six model performance measures among
he combinations using ANOVA. We estimated comparisons
etween predictions by the YY- and AYs-method using a

aired student’s t test and calculated correlations at the
evel of species- and grid cell-based assessments, respec-
ively. The model running and evaluation and all statistical

s
t
o
t

y.

nalyses were done in R 2.12 (R Development Core Team
010).

esults

There were 4082 and 745 (out of 37,552) grid cells
eing investigated in 1993–2004 and 2009–2010, respec-
ively (Fig. 1). Among these grid cells, 280 grid cells were
nvestigated in both survey periods.

Among the six model performance measures, AUC repre-
ented the highest averaged values, followed by sensitivity,
pecificity, accuracy, TSS, and kappa values (Fig. 2). There
ere no significant differences of the values of each mea-

ure among the combinations (ANOVA, d.f. = 3, all p > 0.05).
redictions by the AYs-method had slightly higher model
erformance than those by the YY-method, while each
easure estimated by the testing data in 1993–2004 and

009–2010, respectively, showed incongruent model perfor-
ance (Table 2).
The sum of probabilistic presences and the range sizes

f individual species demonstrated significant differences
etween predictions by the YY- and AYs-method (paired
test, both p < 0.001). Although few (4 out of 17) species
howed greater sum of probabilistic presences predicted by
he YY-method than the AYs-method, most of species (9
ut of 17) were predicted to occupy larger range sizes by
he YY-method than by the AYs-method (Fig. 3A and B).
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Table 2. Six model performance measures estimated separately by the temporally independent and dependent datasets as the mean for the
17 Taiwanese endemic bird species.

Performance measures Training data (1993–2004) Testing data

AYs-method YY-method 1993–2004 2009–2010

AUC 0.90 0.89 0.91 0.89
Accuracy 0.82 0.79 0.79 0.81
Kappa 0.36 0.35 0.32 0.39
Sensitivity 0.86 0.85 0.90 0.82
S 0.79
T 0.65

I
t
s
t
p

A
r

F
a
Y
t
A

pecificity 0.81
SS 0.68

n other words, a species having a high sum of probabilis-
ic presences might not be predicted to occupy large range

izes after transforming the probabilistic predictions into
he presence–absence predictions. The sum of probabilistic
resences of individual species predicted by the YY- and

u
m
a

ig. 3. Differences in (A) sum of probabilistic presences and (B) range
verage of probabilistic presences of 17 endemic bird species per grid cel
Y- and AYs-method. The differences were calculated as “YY-AYs”. Inser

rained by the YY- and AYs-method. Values of the x-axis were predicted
Ys-method. Red lines represent the 1:1 relationship. Species from left to
0.79 0.82
0.68 0.64

Ys-method, respectively, was highly correlated (Fig. 3A;
2 = 0.91) whereas the predicted range sizes of individ-

al species indicated a low correlation between the two
ethods (Fig. 3B; r2 = 0.15). There were no specific trends

mong the rare, uncommon, and common species. Likewise,

sizes of individual species and frequencies of differences in (C)
l and (D) predicted species richness of each grid cell between the
t figures show correlations between predicted results of the models
by the YY-method and values of the y-axis were predicted by the
right in (A) and (B) can refer to Fig. 4 (top to bottom).
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Fig. 4. Patterns of species presences and absences in 1993–2004
and 2009–2010 based on records from 280 grid cells that were
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Schweiger, Pompe, & Klotz 2011). In addition, spatial auto-
nvestigated in both survey periods.

pecies distributional maps, including both probabilistic pres-
nce and presence-absence maps, predicted by the YY-
nd AYs-method had significant differences (paired t test,
oth p < 0.001). In most grid cells, the average probabilis-
ic presences of all species and species richness showed
igher values predicted by the AYs-method than by the
Y-method (Fig. 3C and D). Differences of the average
robabilistic presences of all species of each grid cell
etween the YY- and AYs-method were within ± 0.1 and
ifferences of the predicted species richness of each grid
ell were between −4 and 5 species. The predicted results
howed high correlations between predictions by the YY-
nd AYs-method (Fig. 3C, 3D; r2 = 0.92 and 0.88, average
f probabilistic presences and predicted species richness,
espectively).

When examining the 280 grid cells investigated in both
urvey periods, the species presences and absences were
enerally quite similar, with an average of 85.8% similarity
Fig. 4). But among the 17 species, 0.4–28.9% of the survey
rid cells where species were not observed in 1993–2004
ut observed in 2009–2010 and less than 10% of survey
rid cells showed species presences in 1993–2004 but not in
009–2010. Three species with the highest percent changes
f grid cells from species absences in the early survey period
o species presences in the late survey period were the Tai-
an Barbet (28.9%), the White-eared Sibia (19.3%), and the
aiwan Partridge (18.9%), all of which were categorized as
ommon species.
iscussion

Using temporally independent or dependent datasets in
pecies distribution models as training or testing data

c
d
e

cology 14 (2013) 309–319

nfluences the results of species predicted distributions, espe-
ially when estimating range sizes of a species. There was
o statistical significance observed among model perfor-
ance measures, but models yielded increasing variances
hen using different methods to train and test models.
ach model performance measure did not show congru-
nt patterns in comparison with all dataset combinations,
nd thus it can be misleading to interpret model accuracy
hile reporting any measure alone. Additionally, develop-

ng models based on different methods to select training
atasets does result in different predictions according to
oth species- and grid cell-based assessments that may fur-
her lead to model uncertainty. The manner in which to use
ast and current species distribution data to develop species
istribution models, to evaluate model performance, and to
roject future species distribution requires further explo-
ation.

The problems caused by errors in the location of species
resence records and bias in sampling effort, which often
ccur in different survey periods, have received a great deal
f theoretical treatment (Newbold 2010). The methods we
roposed in this study (i.e. the YY- and AYs-method) were to
mpirically test the effect of these on the accuracy of species
istribution models. We paired t test found that when spa-
ial, taxonomical, and sampling effort was consistent, there
as no difference in model performance between training-
ata extraction methods (e.g. the YY- and AYs-method),
ut predictions in detail still existed. The weights given
o environmental variables in the models using the annual
nd pooled training data caused differences in the sum of
robabilistic presences of individual species and average of
robabilistic presences of all endemic species of each grid
ell. However, we expected that the range sizes of indi-
idual species and the predicted species richness in each
rid cell should produce similar results regardless of the
ethods used. Nevertheless, the results were incongruent.
e detected 0.5- to 3-fold differences in the range sizes of

ndividual species between predictions trained by the YY-
nd AYs-method, which might provoke completely different
onservation assessment and management. Given the consid-
rable investment in time and money necessary to conduct
urveys of species presences, it is important to ensure that
he species records are not biased spatially, environmentally,
emporally, and taxonomically with respect to the environ-

ental variables used. For instance, false absences, which
an occur when a species could not be detected although
t was present, or when the species is not yet/no more
resent but the environment is in fact suitable (e.g. due to
ispersal limitation or metapopulation dynamics), are seen
s one of the main and common drivers of uncertainty in
pecies distribution models and may seriously bias analy-
es (Barry & Elith 2006; Pearson 2007; Hanspach, Kühn,
orrelation may also violate the assumption of independently
istributed errors in the models and affect evaluation of
xplanatory variables resulting in commission error being
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nflated (Legendre 1993; Diniz-Filho, Bini, & Hawkins 2003;
issling, Field, & Böhning-Gaese 2008). However, we could
ot measure the spatial autocorrelation or intrinsic prop-
rties of explanatory variables in the study due to in the
bsence of systematical classification of different-source spa-
ial data.

Similarly, the quantity and quality of the testing data used
n the assessments of presence–absence models have major
mpacts on the interpretation of model results (Foody 2011).
lthough there were no significant differences between
sing the temporally independent (data in 2009–2010) and
ependent (data in 1993–2004) testing data among the
odel performance measures, variances of most measures,

ncluding AUC, kappa, sensitivity, and TSS, among the 17
pecies were higher when estimating by the testing data
elected from the 1993–2004 survey period than from the
009–2010 survey period. The species, such as the Taiwan
arbet, the White-eared Sibia, and the Taiwan Partridge, with
igh competition ability and high tolerance to environmen-
al changes are likely to increase their presences and may
ositively or negatively affect the evaluation of model per-
ormance.

In both ecology and clinical epidemiology, prevalence is
n important factor that is inherent in assessments of model
erformance and predictive accuracy (Lantz & Nebenzahl
996; McPherson, Jetz, & Rogers 2004; Jiménez-Valverde,
obo, & Hortal 2009). We further estimated relationships
etween prevalence and the values of six model performance
easures. In our study, the accuracy, sensitivity, specificity,

nd TSS were influenced less by prevalence (mostly r2 < 0.2)
n both linear and exponential trends that were similar to
hose demonstrated by McPherson et al. (2004) and Allouche
t al. (2006). Although a high correlation was suggested
y those studies when using the dependent datasets as the
esting data, the correlation might be resulted from the origi-
al data itself instead of the prevalence. The kappa values
ere the most dependent on prevalence, with r2 ranging

rom 0.23 to 0.31 among different dataset combinations.
he AUC values indicated slightly different patterns in the

wo testing datasets. Regardless of the training datasets and
he linear and exponential trends, the aforementioned r2

alues which were estimated by the temporally dependent
atasets were higher than those estimated by the tempo-
ally independent datasets. These result indicated a high
nd low response to prevalence, respectively, and also dif-
erent from known AUC, which should be independent of
revalence. Yet we have not discovered a good explana-
ion for the findings. We also found slightly negative effects
f prevalence on the AUC, accuracy, sensitivity, and speci-
city, which implied some common species (i.e. widespread
pecies) might have lower values of predictive accuracy (i.e.
reater overall errors) than uncommon species (i.e. restricted-

ange species). A possible explanation is that the local
vailability of environmental resources may be of overrid-
ng importance in limiting the distributions of some common
pecies (Guisan & Hofer 2003; Segurado & Araujo 2004).

C

cology 14 (2013) 309–319 317

he negative relationships between model performance and
pecies prevalence require further tests at a local scale in
aiwan.
In all, our comparisons of data splitting in the species distri-

ution models identified differences among model evaluation
nd predicted species distributions; to be successful, estab-
ishing long-term species sampling networks and monitoring
pecies distributional changes are important for the usages of
pecies distribution models and further proper interpretation
f predictions.
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